

Application of a costing model consistent with LCA to the production of pasta in a small-sized firm

ETTORE SETTANNI, BRUNO NOTARNICOLA, GIUSEPPE TASSIELLI

Il Faculty of Economics, Taranto, University of Bari Aldo Moro, Italy

Background and motivation:

- Relevance of costing models in sustainability analysis;
 - Strong complementary relationship between environmental awareness and operational effectiveness is likely to exist (Newman and Hannah, 1996).
- Applications to food products (nondurable goods) show peculiar implementation and methodological problems:
 - Few applications of LCC to food products and, more generally, to nondurable products;
 - Mostly, investments in some new food production plant;
 - System boundaries and linkages with the life cycle inventory of the food product unclear/inconsistent;
 - Major need to explore the implications of "consistency" of costing with LCA from a computational perspective.

Objective and scope:

- To show, by means of an illustrative case study how to:
 - Model in details the food operations chain actually controlled by one relevant actor (the producer of fresh pasta), by using IOA principles;
 - Perform practical non-deterministc analysis;
 - Integrate the results obtained within an LCI dataset
- Application context: to support
 - The integrated **control and management** of physical flows and costs within a multiproduct, multistage production system that
 - Already exists and operate,
 - Produces non-durable products (e.g. food products);
 - The supply of site-specific information for a LCI.

- **×** Which perspective is the relevant one?
 - + producer, user, supply chain, society, market, or the whole physical lifecycle
- × Which economic measure to include: costs or cash flows?
- × Which environmental costs?
 - + External; Internal material flow-related.
- * Which approaches should be adopted to include economic aspects?
 - + Toolbox (combination); extension (integration); hybrid models
- × Which focus?
 - + Data gathering; computational mechanisms
- × Type of data
 - + Site dependent; site specific; Inclusion of time (dynamics)

Processes (material flows not balanced - ref.: one process run)																				
			A		В			С			D			Ε			F		G	Cost
	unit	A(1)	A(2)	B(1)	B(2)	B(3)	C(1)	C(2)	C(3)	D(1)	D(2)	D(3)	E(1)	E(2)	E(3)	F(1)	F(2)	F(3)		Coeffi-
																				Clents (€/unit)
Dough type 1	kg																		· · · · · ·	
Dough type 2	kg																			
Formed pasta type 1	kg																			
Formed pasta type 2	kg																			
Formed pasta type 3	kg																			
Pasteurized pasta type 1	kg																			
Pasteurized pasta type 2	kg									ZTT										
Pasteurized pasta type 3	kg									L 1,1										
Pre-dried pasta type 1	kg																			l ni
Pre-dried pasta type 2	kg																			P.
Pre-dried pasta type 3																				
Cooled pasta type 1																				
Cooled pasta type 2																				
Declared pasta type 5	06																			
Deckeged pasta type 1	- 96 1-a																			
Packaged pasta type 2	- the kg																			
Overheated steam	kg																			
Semoline time 1	væ Þæ																			
Semolina type 2	kg																			
Water (var.)	Ĺ																			
Electric energy (var.)	kWA.																			
Nitrogen	L																			
Carbon dioxide	L																			
Cardboard	pieces									-M	1									
Lead time A	min										.,.									-
Lead time B	min																			$\mathbf{P}M$
Lead time C	min																			
Lead time D	min																			
Lead time E	min																			
Lead time G	min																			
Crude scrap stage C	kg																			
Crude scrap stage E	ķg									N_{TT}										
Moisture losses	kg									± •1,1										
Ketumed final items	4 <u>6</u>						1	1												
Fixed cost ove	rheads (ref.: or	ne shift)																	
Flacteic anarou (fix)	1-Wh	、											-						· · · · ·	
Natural Gos	MI									-										
Water (incl. line clr.)										E F										
Valer (incl. nine CIR.)	min																			$\mathbf{P}F$
Labour (incl. setups)	min									D										لسيساي
Fixed emissions CO	: Kg									R.	T									

1 Set and exogenous production plan												
	Production Pogram (1 shift)											
		unit	Final deliveries									
	Dough type 1	kg										
	Dough type 2	kg										
	Formed pasta type 1	kg										
	Formed pasta type 2	kg										
	Formed pasta type 3	kg										
	Pasteurized pasta type 1	kg										
(vector of	Pasteurized pasta type 2	kg	77.0									
	Pasteurized pasta type 3	kg	\mathbf{y}_I									
final deliveria	Pre-dried pasta type 1	kg										
illiai uelivelle	S Pre-dried pasta type 2	kg										
	Pre-dried pasta type 3	kg										
	Cooled pasta type 1	kg										
	Cooled pasta type 2	kg										
	Cooled pasta type 3	kg										
	Packaged pasta type 1	kg										
	Packaged pasta type 2	kg										
	Packaged pasta type 3	kg										
	Overheated steam	kg										

4 Calculate the direct costs of each

2 Determine the activity levels of processes

$$\mathbf{Z}_{I,I} \cdot \mathbf{s}_I = \mathbf{y}_I \rightarrow \mathbf{s}_I = \mathbf{Z}_{I,I}^{-1} \cdot \mathbf{y}_I$$

3 Obtain a balance of material flows

$$\widetilde{\mathbf{B}}_{\bullet,I} = \begin{bmatrix} -\mathbf{M}_{\bullet,I} \\ \overline{\mathbf{N}}_{I,I} \end{bmatrix} \cdot \widehat{\mathbf{s}}_{I} \qquad \widetilde{\mathbf{Z}}_{I,I} = \mathbf{Z}_{I,I}$$

 $\widetilde{\mathbf{Z}}_{I,I} = \mathbf{Z}_{I,I} \cdot \widehat{\mathbf{s}}_{I}$

5 Calculate the unit cost of each intermediate and final product

$$\boldsymbol{\omega} = \begin{bmatrix} \mathbf{p}_M^T & \mathbf{p}_F^T \end{bmatrix} \cdot \begin{bmatrix} \mathbf{\widetilde{B}}_{\bullet,I} \\ \mathbf{F} \\ \mathbf{R}_{\bullet,I} \end{bmatrix}$$

process

$$\mathbf{p} = \boldsymbol{\omega} \cdot \widetilde{\mathbf{Z}}^{-1}$$

Production cos	Production costs (relative to the production plan)																	
	A(1)	A(2)	B(1)	B(2)	B(3)	C(1)	C(2)	C(3)	D(1)	D(2)	D(3)	E(1)	E(2)	E(3)	F(1)	F(2)	F(3)	G
Direct process costs (€)	290.65	122.95	28.20	8.33	7.00	10.44	3.06	2.88	9.62	2.82	2.66	10.35	3.03	2.85	96.44	22.44	23.52	6.54
	B 4	₿2	B :	₿4	₿s	₿4	₿:	<u>p</u> 4	₿a	Bue	Bu.	Bu.	Bu	Bu	Bu	₿14	₿u.	₿u.
	Dough base 1	Dough base 2	Found pasta boos J	Formed pasta type 2	Formed pasta bogs 3	Pesterucia gd pasta type J	Resterutiz gd pasta tygg 2	Resteruiz ed pasta type 3	Pre-duied pasta tzgs J	Pre-dried pasta tzrgs 2	Ru-duied pasta type 3	Cooled pasta type J	Cooled pasta type 3	Cooled pasta type 3	Package d pasta type 1	Package d pasta type 2	Package d pasta type 3	Overheat. ed steam
Unit product costs (€/kg)	0.34	0.29	0.38	0.33	0.32	0.39	0.35	0.34	0.42	0.38	0.37	0.43	0.39	0.38	0.56	0.51	0.507	0.05

6 Associate uncertainty to the parameters and run Monte Carlo Simulation

Turning the costing model (multi-product) into LCA:

- Re-define the vector of final deliveries $\mathbf{y}_{LCA_{process}}$ such as:
 - It shows just one positive entry (the amount of output of one chosen product type)
- Solve: $\widetilde{\mathbf{Z}}_{I,I} \cdot \mathbf{s}_{LCA_process} = \mathbf{y}_{LCA_process}$
- Obtain the unit process for use in LCA as a column vector:

$$\begin{bmatrix} \mathbf{\tilde{Z}}_{\bullet,I} \\ \mathbf{\tilde{B}}_{\bullet,I} \\ \mathbf{F}_{-} \\ \mathbf{R}_{-} \end{bmatrix} \cdot \mathbf{s}_{LCA_{-} process} = \begin{bmatrix} \mathbf{a} \\ \mathbf{b} \end{bmatrix}$$

- Link properly the new unit process within a process network database to form a LCI
- Run LCA

Example of contribution analysis (Ref: 1kg of fresh pasta "type 2") by using CMLCA 5.1 and Ecoinvent Database

Example of combination of cost and environmental coordinates (Ref: 1kg of fresh pasta "type 2")

Additional steps: process inefficiencies (scraps/by-products) and allocation

Calculate the recycling percentages (for n_I production processes and k waste types)

$$\forall k, (\rho_I)_k = \sum_{j=1}^{n_I} (\mathbf{N}_{I,I})_{kj} \times (\mathbf{s}_I)_j$$
$$\forall k, (\eta_I)_k = \sum_{j=1}^{n_I} (\mathbf{N}_{I,I})_{kj} \times (\mathbf{s}_I)_j$$

$$r_k = \frac{(\eta_I)_k}{(\rho_I)_k} \qquad \mathbf{r}_I = [r_I]$$

$$\mathbf{r}_{I} = \begin{bmatrix} r_{1} & \cdots & r_{k} & \cdots \end{bmatrix}^{T}$$

Turn the different types of wastes/by-products into the demand of treatment processes

$$\mathbf{Q} = \begin{bmatrix} q_{lk} \end{bmatrix} \text{ where } 0 \le q_{lk} \le 1 \qquad \text{in this case study: waste collection only and no} \\ \tilde{\mathbf{Z}}_{II,I} = \begin{bmatrix} -\mathbf{Q} \cdot (\mathbf{I} - \hat{\mathbf{r}}_I) \end{bmatrix} \cdot (\overline{\mathbf{N}}_{I,I} \cdot \hat{\mathbf{s}}_I) \qquad \text{in this case study: waste collection only and no} \\ \text{recycling of waste types generated by the} \\ \text{treatment processes (simplest case)} \end{cases}$$

Calculate the scaling factors again, taking into account the treatment processes

$$\mathbf{s}_{II} = \mathbf{X}^{-1} \cdot \mathbf{y}_{II} \quad \text{where} \quad \mathbf{X} = \begin{pmatrix} \tilde{\mathbf{z}}_{I,I} & \mathbf{z}_{I,II} \\ \tilde{\mathbf{z}}_{II,I} & \mathbf{z}_{II,II} \end{pmatrix}$$
$$\tilde{\mathbf{X}} = \mathbf{X} \cdot \hat{\mathbf{s}}_{II} \quad \text{and} \quad \tilde{\mathbf{B}} = \begin{pmatrix} \tilde{\mathbf{B}}_{\bullet,I} & || \mathbf{B}_{\bullet,II} \end{pmatrix} \cdot \hat{\mathbf{s}}_{II}$$

Calculate the direct process costs and the unit costs again

$$\boldsymbol{\omega} = \begin{bmatrix} \mathbf{p}_M^T & \mathbf{p}_F^T \end{bmatrix} \cdot \begin{bmatrix} \widetilde{\mathbf{B}} \\ \mathbf{F} \end{bmatrix} \quad \text{and} \quad \mathbf{p} = \boldsymbol{\omega} \cdot \widetilde{\mathbf{X}}^{-1}$$

The cost of producing and disposing of waste (non value-added activity) is now explicit

Costs (with allocatio	n) unit	<i>C</i> (2)	C(SCRAP)	Ē	E(2)	E(SCRAP)	_	<i>F</i> (2)	F(SCRAP)	Н
Direct process costs (€)	kg	3.058	0.002		3.027	0.003	-	21.94	0.45706	10.48
Unit cost of formed pasta type 2	€/kg	0.35	0.75		0.39	0.795		0.50	0.912056	0.4

Concluding remarks

- × Advantages of matrix-based costing:
 - + Unlike "traditional LCC" it applies to
 - × Non durable good such as food products, not only durable goods;
 - × Existing processes, not only to prospective investments.
 - + Supports actual managerial decision making processes within the firm;
- Consistency with LCA and integration: a matter of computational structure
 - + Theoretically, whatever complex multi-stage multi-product system can be analyzed in sufficient details by Input-Output accounting, and then turned into a black-box unit process for use within LCI;
 - + In practice, carefully consider the extent to which it is possible or useful to gain insight into the cost structure of one or more supply chain actors;
- Profitability within the Agri-food supply chain needs careful assessment